学术报告
学术报告
当前位置:首页  学术报告
2014年国际拓扑学研讨会(6163银河线路检测中心)”报告安排
发布人:系统管理员  发布时间:2014-01-14   浏览次数:1206

日程安排

 

时间:1⽉17——18日
报告地点:哈尔滨⼯业⼤学新活动中心327

 

 

17

18

8:30——9:15

赵学志

王诗宬

9:30——10:15

马继明

张宇

10:35——11:20

陈史标

邱瑞锋

2:00——2:45

张影

 

3:00——3:45

李友林

4:05——4:50

杨志

 

 

 

 



 

报告题目及摘要


陈史标:A dilogarithm identity on moduli spaces of curves
Abstract: We will talk about a new identity for closed hyperbolic surfaces which involves the dilogarithm of the lengths of simple closed geodesics on the surface, and also relate it to some previously known identities by Basmajian, McShane and Bridgeman. The identity also generalizes in a natural way to surfaces with boundary and non-orientable hyperbolic surfaces. This is a joint work with Feng Luo.


李友林:TBD


马继明:Quasi-homomorphisms on mapping class groups vanishing on handlebody groups
Abstract: We construct infinitely many quasi-homomorphisms on the mapping class group of a Riemann surface with genus bigger than two which vanishes on the handlebody subgroup. As a corollary, we give counter-examples to a conjecture of Reznikov. This is a joint work with Jiajun wang and Saul Schleimer.


邱瑞锋:Tunnel number of composite knots


王诗宬:TBD


杨志青:纽结不变量的新思路和问题
摘要:⽤组合方法或辫群来构造纽结不变量是构造纽结不变量的经典方法。我们发现这两类方法都有很大的推⼴余地。比如:用组合方法(skein rekation)定义纽结不变量时,拆分的项数,图表的参数,在图上添加装饰(marker)等技术可以用来修改拆分关系方程式,从而可以定义更多类型的纽结不变量。在本报告中,我们将系统介绍几种构造纽结不变量的新技巧,讨论了前景,应用和问题。

张影:TBD


张宇:Three-manifold invariants associated with restricted quantum groups
Abstract: We show a simple relation between Witten–Reshetikhin–Turaev SU(2) invariant and the Hennings invariant associated with the restricted quantum sl2. These invariants are defined in very different methods: the former uses the representation theory of quantum sl2 while the latter uses the integral of the Hopf algebra. This is a joint work with Qi Chen and Chih-Chien Yu.


赵学志:空间图的Alexander不变量