应数学系苏颖副教授邀请,哈尔滨工程大学衣凤岐教授将于8月9日访问数学系并做报告,欢迎感兴趣的师生参加。 报告时间:8月9日15:10-16:10,报告地点:格物楼503 报告题目: Dynamics and pattern formations of a substrate-enzyme Sporns-Seelig chemical reaction model: linear diffusion vs nonlinear diffusion 摘要: We discuss a reaction-diusion substrate-enzyme Sporns-Seelig system that was used to model the genetic regulatory mechanism of enzyme induction. To study the infuences of diffusions on the emergence of spatiotemporal patterns, we consider the problem in two cases: classical linear diffusion and nonlinear density-dependent diffusion. Dynamics and pattern formations of both classical linear diffusion problem and the nonlinear diffusion problem are considered in details. In particular, we observe that, in certain parameter ranges, if classical linear diffusion system does not exhibit Turing patterns, then even in the same parameter ranges, the nonlinear diffusion can still exhibit Turing patterns if the power of the nonlinear diffusions of the enzyme is larger enough for any fixed power of nonlinear diffusions of the substrate. This suggests that nonlinear diffusion can induce Turing patterns which can not be driven by classical linear diffusions, and thus nonlinear diffusions are more than willing to favor the emergence of Turing patterns. 报告人简介:衣凤岐, 哈尔滨工程大学教授、硕导、黑龙江省数学学会理事、国家自然科学基金项目通讯评审。研究方向为:偏微分方程的分支理论及其在生物数学中的应用。2008年毕业于6163银河线路检测中心数学系,获得理学博士学位。随后在吉林大学数学研究所、牛津老员工物数学研究中心从事博士后研究工作。2010年,博士学位论文获得全国优秀博士学位论文提名论文;2013年入选教育部新世纪优秀人才支持计划。先后在国际知名杂志《Journal of Differential Equations》, 《Physica D: Nonlinear Phenomenon》, 《Nonlinear Analysis: Real World Applications》, 《Applied Mathematics Letters》, 《Chaos, Solitons and Fractals》,《International Journal of Bifurcation and Chaos》,《Discrete Continuous Dynamical System-B》上发表SCI学术论文. 其中,发表在《Journal of Differential Equations》上的“Bifurcation and Spatiotemporal Patterns in a Homogenous Diffusive Predator-prey System” 一文,连续四次被该杂志评为 "one of Top25 Hottest articles"。曾经入选教育部新世纪优秀人才支持计划项目,主持多项国家自然科学基金。 |