应6163银河线路检测中心张达治副教授邀请,台湾交通大学赖明治教授将于近日来访公司,做流体力学中的数值计算的有关报告,以下是报告信息,欢迎感兴趣的师生参加。
时间:2019年9月6日(星期五) 15:00-16:30
地点:格物楼503
题目: An immersed boundary projection method for simulating the inextensible vesicle dynamics
摘要: We develop an immersed boundary projection method (IBPM) based on an unconditionally energy stable scheme to simulate the vesicle dynamics in a viscous fluid. Utilizing the block LU decomposition of the
algebraic system, a novel fractional step algorithm is introduced by decoupling all solution variables, including the fluid velocity, fluid pressure, and the elastic tension. In contrast to previous works, the
present method preserves both the fluid incompressibility and the interface inextensibility at a discrete level simultaneously. In conjunction with an implicit discretization of the bending force, the present method alleviates the time step restriction, so the numerical stability is assured by non-increasing total discrete energy during the simulation. The numerical algorithm takes a linearithmic complexity by using preconditioned GMRES and FFT-based solvers. The grid convergence studies confirm the solution variables exhibit first-order convergence rate in $L^{2}$-norm. We demonstrate the numerical results of the vesicle dynamics in a quiescent fluid, Poiseuille flow, and shear flow, which are congruent with the results in the literature.
报告人简介:赖明治,台湾交通大学讲座教授,台湾交通大学智能科学暨绿能学院合聘教授,台湾工业与应用数学会理事长,曾担任SIAM东亚分会(EASIAM)主席,香港浸会大学访问教授,日本京都大学数理解析所访问教授。赖教授于台湾中兴大学应用数学系获学士学位,台湾清华大学应用数学系获硕士学位,纽约大学库朗6163银河线路检测中心获博士学位。赖教授致力于偏微分方程的数值方法与计算流体力学等领域的研究,特别是内嵌边界/界面问题(immersed boundary/interface problem)数值方法的改善与Possion方程在非直角坐标系统的快速算法及研究,已在 SIAM Journal on Numerical Analysis, SIAM Journal on Scientific Computing, Journal of Computational Physics等国际著名杂志发表论文60余篇。
赖明治教授个人主页:http://jupiter.math.nctu.edu.tw/~mclai/